Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Clin Exp Immunol ; 2023 Apr 24.
Article in English | MEDLINE | ID: covidwho-2305546

ABSTRACT

Post-acute cardiac sequelae, following SARS-CoV-2 infection, are well recognised as complications of COVID-19. We have previously shown the persistence of autoantibodies against antigens in skin, muscle, and heart in individuals following severe COVID-19; the most common staining on skin tissue displayed an inter-cellular cement pattern consistent with antibodies against desmosomal proteins. Desmosomes play a critical role in maintaining the structural integrity of tissues. For this reason, we analysed desmosomal protein levels and the presence of anti-desmoglein (DSG) 1, 2 and 3 antibodies in acute and convalescent sera from patients with COVID-19 of differing clinical severity. We find increased levels of DSG2 protein in sera from acute COVID-19 patients. Furthermore, we find that DSG2 autoantibody levels are increased significantly in convalescent sera following severe COVID-19 but not in hospitalised patients recovering from influenza infection or healthy controls. Levels of autoantibody in sera from patients with severe COVID-19 were comparable to levels in patients with non-COVID-19-associated cardiac disease, potentially identifying DSG2 autoantibodies as a novel biomarker for cardiac damage. To determine if there was any association between severe COVID-19 and DSG2, we stained post-mortem cardiac tissue from patients who died from COVID-19 infection. This confirmed DSG2 protein within the intercalated discs and disruption of the intercalated disc between cardiomyocytes in patients who died from COVID-19. Our results reveal the potential for DSG2 protein and autoimmunity to DSG2 to contribute to unexpected pathologies associated with COVID-19 infection.

2.
NPJ Vaccines ; 8(1): 26, 2023 Feb 25.
Article in English | MEDLINE | ID: covidwho-2263084

ABSTRACT

Prospective population-based studies investigating associations between reactive symptoms following SARS-CoV-2 vaccination and serologic responses to vaccination are lacking. We therefore conducted a study in 9003 adults from the UK general population receiving SARS-CoV-2 vaccines as part of the national vaccination programme. Titres of combined IgG/IgA/IgM responses to SARS-CoV-2 spike (S) glycoprotein were determined in eluates of dried blood spots collected from all participants before and after vaccination. 4262 (47.3%) participants experienced systemic reactive symptoms after a first vaccine dose. Factors associating with lower risk of such symptoms included older age (aOR per additional 10 years of age 0.85, 95% CI: 0.81-0.90), male vs. female sex (0.59, 0.53-0.65) and receipt of an mRNA vaccine vs. ChAdOx1 nCoV-19 (0.29, 0.26-0.32 for BNT162b2; 0.06, 0.01-0.26 for mRNA-1273). Higher risk of such symptoms was associated with SARS-CoV-2 seropositivity and COVID-19 symptoms prior to vaccination (2.23, 1.78-2.81), but not with SARS-CoV-2 seropositivity in the absence of COVID-19 symptoms (0.94, 0.81-1.09). Presence vs. absence of self-reported anxiety or depression at enrolment associated with higher risk of such symptoms (1.24, 1.12-1.39). Post-vaccination anti-S titres were higher among participants who experienced reactive symptoms after vaccination vs. those who did not (P < 0.001). We conclude that factors influencing risk of systemic symptoms after SARS-CoV-2 vaccination include demographic characteristics, pre-vaccination SARS-CoV-2 serostatus and vaccine type. Participants experiencing reactive symptoms following SARS-CoV-2 vaccination had higher post-vaccination titres of IgG/A/M anti-S antibodies. Improved public understanding of the frequency of reactogenic symptoms and their positive association with vaccine immunogenicity could potentially increase vaccine uptake.

3.
Lupus ; 32(3): 431-437, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2195008

ABSTRACT

OBJECTIVES: Patients with Systemic Lupus Erythematosus are known to have dysregulated immune responses and may have reduced response to vaccination against COVID-19 while being at risk of severe COVID-19 disease. The aim of this study was to identify whether vaccine responses were attenuated in SLE and to assess disease- and treatment-specific associations. METHODS: Patients with SLE were matched by age, sex and ethnic background to healthcare worker healthy controls (HC). Anti-SARS-CoV-2 spike glycoprotein antibodies were measured at 4-8 weeks following the second COVID-19 vaccine dose (either BNT162b2 or ChAdOx1 nCoV-19) using a CE-marked combined ELISA detecting IgG, IgA and IgM (IgGAM). Antibody levels were considered as a continuous variable and in tertiles and compared between SLE patients and HC and associations with medication, disease activity and serological parameters were determined. RESULTS: Antibody levels were lower in 43 SLE patients compared to 40 HC (p < 0.001). There was no association between antibody levels and medication, lupus disease activity, vaccine type or prior COVID infection. Higher serum IgA, but not IgG or IgM, was associated with being in a higher anti-SARS-CoV-2 antibody level tertile (OR [95% CI] 1.820 [1.050, 3.156] p = 0.033). Similarly, higher lymphocyte count was also associated with being in a higher tertile of anti-SARS-CoV-2 (OR 3.330 [1.505, 7.366] p = 0.003). CONCLUSION: Patients with SLE have lower antibody levels following 2 doses of COVID-19 vaccines compared to HC. In SLE lower lymphocyte counts and serum IgA levels are associated with lower antibody levels post vaccination, potentially identifying a subgroup of patients who may therefore be at increased risk of infection.


Subject(s)
COVID-19 , Lupus Erythematosus, Systemic , Humans , COVID-19 Vaccines , BNT162 Vaccine , ChAdOx1 nCoV-19 , Vaccination , Lymphocyte Count , Antibodies, Viral , Immunoglobulin A , Immunoglobulin M
4.
Front Immunol ; 13: 838780, 2022.
Article in English | MEDLINE | ID: covidwho-2141804

ABSTRACT

Antibodies specific for the spike glycoprotein (S) and nucleocapsid (N) SARS-CoV-2 proteins are typically present during severe COVID-19, and induced to S after vaccination. The binding of viral antigens by antibody can initiate the classical complement pathway. Since complement could play pathological or protective roles at distinct times during SARS-CoV-2 infection we determined levels of antibody-dependent complement activation along the complement cascade. Here, we used an ELISA assay to assess complement protein binding (C1q) and the deposition of C4b, C3b, and C5b to S and N antigens in the presence of antibodies to SARS-CoV-2 from different test groups: non-infected, single and double vaccinees, non-hospitalised convalescent (NHC) COVID-19 patients and convalescent hospitalised (ITU-CONV) COVID-19 patients. C1q binding correlates strongly with antibody responses, especially IgG1 levels. However, detection of downstream complement components, C4b, C3b and C5b shows some variability associated with the subject group from whom the sera were obtained. In the ITU-CONV, detection of C3b-C5b to S was observed consistently, but this was not the case in the NHC group. This is in contrast to responses to N, where median levels of complement deposition did not differ between the NHC and ITU-CONV groups. Moreover, for S but not N, downstream complement components were only detected in sera with higher IgG1 levels. Therefore, the classical pathway is activated by antibodies to multiple SARS-CoV-2 antigens, but the downstream effects of this activation may differ depending the disease status of the subject and on the specific antigen targeted.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Complement Activation , Complement C1q , Humans , Immunoglobulin G , Nucleoproteins , Spike Glycoprotein, Coronavirus , Vaccination
5.
Front Immunol ; 13: 984376, 2022.
Article in English | MEDLINE | ID: covidwho-2065516

ABSTRACT

Background: Individuals with primary and secondary immunodeficiency (PID/SID) were shown to be at risk of poor outcomes during the early stages of the SARS-CoV-2 pandemic. SARS-CoV-2 vaccines demonstrate reduced immunogenicity in these patients. Objectives: To understand whether the risk of severe COVID-19 in individuals with PID or SID has changed following the deployment of vaccination and therapeutics in the context of the emergence of novel viral variants of concern. Methods: The outcomes of two cohorts of patients with PID and SID were compared: the first, infected between March and July 2020, prior to vaccination and treatments, the second after these intervention became available between January 2021 and April 2022. Results: 22.7% of immunodeficient patients have been infected at least once with SARS-CoV-2 since the start of the pandemic, compared to over 70% of the general population. Immunodeficient patients were typically infected later in the pandemic when the B.1.1.529 (Omicron) variant was dominant. This delay was associated with receipt of more vaccine doses and higher pre-infection seroprevalence. Compared to March-July 2020, hospitalization rates (53.3% vs 17.9%, p<0.0001) and mortality (Infection fatality rate 20.0% vs 3.4%, p=0.0003) have significantly reduced for patients with PID but remain elevated compared to the general population. The presence of a serological response to vaccination was associated with a reduced duration of viral detection by PCR in the nasopharynx. Early outpatient treatment with antivirals or monoclonal antibodies reduced hospitalization during the Omicron wave. Conclusions: Most individuals with immunodeficiency in the United Kingdom remain SARS-CoV-2 infection naïve. Vaccination, widespread availability of outpatient treatments and, possibly, the emergence of the B.1.1.529 variant have led to significant improvements in morbidity and mortality followings SARS-CoV-2 infection since the start of the pandemic. However, individuals with PID and SID remain at significantly increased risk of poor outcomes compared to the general population; mitigation, vaccination and treatment strategies must be optimized to minimize the ongoing burden of the pandemic in these vulnerable cohorts.


Subject(s)
COVID-19 , Sudden Infant Death , Antibodies, Monoclonal , Antiviral Agents , COVID-19/epidemiology , COVID-19 Vaccines , Hospitalization , Humans , SARS-CoV-2/genetics , Seroepidemiologic Studies , Vaccination
6.
BMJ Open Respir Res ; 9(1)2022 09.
Article in English | MEDLINE | ID: covidwho-2053233

ABSTRACT

BACKGROUND: There is increasing evidence that vitamin D (VD) deficiency may increase individuals' risk of COVID-19 infection and susceptibility. We aimed to determine the relationship between VD deficiency and sufficiency and COVID-19 seropositivity within healthcare workers. METHODS: The study included an observational cohort of healthcare workers who isolated due to COVID-19 symptoms from 12 May to 22 May 2020, from the University Hospitals Birmingham National Health Service Foundation Trust. Data collected included SARS-CoV-2 seroconversion status, serum 25(OH)D3 levels, age, body mass index (BMI), sex, ethnicity, job role and comorbidities. Participants were grouped into four VD categories: (1) Severe VD deficiency (VD<30 nmol/L); (2) VD deficiency (30 nmol/L ≤VD<50 nmol/L); (3) VD insufficiency (50 nmol/L ≤VD<75 nmol/L); (4) VD sufficiency (VD≥75 nmol/L). RESULTS: When VD levels were compared against COVID-19 seropositivity rate, a U-shaped curve was identified. This trend repeated when participants were split into subgroups of age, sex, ethnicity, BMI and comorbidity status. Significant difference was identified in the COVID-19 seropositivity rate between VD groups in the total population and between groups of men and women; black, Asian and minority ethnic (BAME) group; BMI<30 (kg/m2); 0 and +1 comorbidities; the majority of which were differences when the severely VD deficient category were compared with the other groups. A larger proportion of those within the BAME group (vs white ethnicity) were severely VD deficient (p<0.00001). A larger proportion of the 0 comorbidity subgroup were VD deficient in comparison to the 1+ comorbidity subgroup (p=0.046). CONCLUSIONS: Our study has shown a U-shaped relationship for COVID-19 seropositivity in UK healthcare workers. Further investigation is required to determine whether high VD levels can have a detrimental effect on susceptibility to COVID-19 infection. Future randomised clinical trials of VD supplementation could potentially identify 'optimal' VD levels, allowing for targeted therapeutic treatment for those at risk.


Subject(s)
COVID-19 , Vitamin D Deficiency , COVID-19/epidemiology , Female , Health Personnel , Humans , Male , SARS-CoV-2 , State Medicine , United Kingdom/epidemiology , Vitamin D , Vitamin D Deficiency/epidemiology
7.
Vaccines (Basel) ; 10(10)2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2044040

ABSTRACT

Antibody responses to SARS-CoV-2 vaccines vary for reasons that remain poorly understood. A range of sociodemographic, behavioural, clinical, pharmacologic and nutritional factors could explain these differences. To investigate this hypothesis, we tested for presence of combined IgG, IgA and IgM (IgGAM) anti-Spike antibodies before and after 2 doses of ChAdOx1 nCoV-19 (ChAdOx1, AstraZeneca) or BNT162b2 (Pfizer-BioNTech) in UK adults participating in a population-based longitudinal study who received their first dose of vaccine between December 2020 and July 2021. Information on sixty-six potential sociodemographic, behavioural, clinical, pharmacologic and nutritional determinants of serological response to vaccination was captured using serial online questionnaires. We used logistic regression to estimate multivariable-adjusted odds ratios (aORs) for associations between independent variables and risk of seronegativity following two vaccine doses. Additionally, percentage differences in antibody titres between groups were estimated in the sub-set of participants who were seropositive post-vaccination using linear regression. Anti-spike antibodies were undetectable in 378/9101 (4.2%) participants at a median of 8.6 weeks post second vaccine dose. Increased risk of post-vaccination seronegativity associated with administration of ChAdOx1 vs. BNT162b2 (adjusted odds ratio (aOR) 6.6, 95% CI 4.2-10.4), shorter interval between vaccine doses (aOR 1.6, 1.2-2.1, 6-10 vs. >10 weeks), poor vs. excellent general health (aOR 3.1, 1.4-7.0), immunodeficiency (aOR 6.5, 2.5-16.6) and immunosuppressant use (aOR 3.7, 2.4-5.7). Odds of seronegativity were lower for participants who were SARS-CoV-2 seropositive pre-vaccination (aOR 0.2, 0.0-0.6) and for those taking vitamin D supplements (aOR 0.7, 0.5-0.9). Serologic responses to vaccination did not associate with time of day of vaccine administration, lifestyle factors including tobacco smoking, alcohol intake and sleep, or use of anti-pyretics for management of reactive symptoms after vaccination. In a sub-set of 8727 individuals who were seropositive post-vaccination, lower antibody titres associated with administration of ChAdOx1 vs. BNT162b2 (43.4% lower, 41.8-44.8), longer duration between second vaccine dose and sampling (12.7% lower, 8.2-16.9, for 9-16 weeks vs. 2-4 weeks), shorter interval between vaccine doses (10.4% lower, 3.7-16.7, for <6 weeks vs. >10 weeks), receiving a second vaccine dose in October-December vs. April-June (47.7% lower, 11.4-69.1), older age (3.3% lower per 10-year increase in age, 2.1-4.6), and hypertension (4.1% lower, 1.1-6.9). Higher antibody titres associated with South Asian ethnicity (16.2% higher, 3.0-31.1, vs. White ethnicity) or Mixed/Multiple/Other ethnicity (11.8% higher, 2.9-21.6, vs. White ethnicity), higher body mass index (BMI; 2.9% higher, 0.2-5.7, for BMI 25-30 vs. <25 kg/m2) and pre-vaccination seropositivity for SARS-CoV-2 (105.1% higher, 94.1-116.6, for those seropositive and experienced COVID-19 symptoms vs. those who were seronegative pre-vaccination). In conclusion, we identify multiple determinants of antibody responses to SARS-CoV-2 vaccines, many of which are modifiable.

8.
Nutrients ; 14(18)2022 Sep 16.
Article in English | MEDLINE | ID: covidwho-2043873

ABSTRACT

Vitamin D deficiency has been reported to associate with the impaired development of antigen-specific responses following vaccination. We aimed to determine whether vitamin D supplements might boost the immunogenicity and efficacy of SARS-CoV-2 vaccination by conducting three sub-studies nested within the CORONAVIT randomised controlled trial, which investigated the effects of offering vitamin D supplements at a dose of 800 IU/day or 3200 IU/day vs. no offer on risk of acute respiratory infections in UK adults with circulating 25-hydroxyvitamin D concentrations <75 nmol/L. Sub-study 1 (n = 2808) investigated the effects of vitamin D supplementation on the risk of breakthrough SARS-CoV-2 infection following two doses of SARS-CoV-2 vaccine. Sub-study 2 (n = 1853) investigated the effects of vitamin D supplementation on titres of combined IgG, IgA and IgM (IgGAM) anti-Spike antibodies in eluates of dried blood spots collected after SARS-CoV-2 vaccination. Sub-study 3 (n = 100) investigated the effects of vitamin D supplementation on neutralising antibody and cellular responses in venous blood samples collected after SARS-CoV-2 vaccination. In total, 1945/2808 (69.3%) sub-study 1 participants received two doses of ChAdOx1 nCoV-19 (Oxford-AstraZeneca); the remainder received two doses of BNT162b2 (Pfizer). Mean follow-up 25(OH)D concentrations were significantly elevated in the 800 IU/day vs. no-offer group (82.5 vs. 53.6 nmol/L; mean difference 28.8 nmol/L, 95% CI 22.8-34.8) and in the 3200 IU/day vs. no offer group (105.4 vs. 53.6 nmol/L; mean difference 51.7 nmol/L, 45.1-58.4). Vitamin D supplementation did not influence the risk of breakthrough SARS-CoV-2 infection in vaccinated participants (800 IU/day vs. no offer: adjusted hazard ratio 1.28, 95% CI 0.89 to 1.84; 3200 IU/day vs. no offer: 1.17, 0.81 to 1.70). Neither did it influence IgGAM anti-Spike titres, neutralising antibody titres or IFN-γ concentrations in the supernatants of S peptide-stimulated whole blood. In conclusion, vitamin D replacement at a dose of 800 or 3200 IU/day effectively elevated 25(OH)D concentrations, but it did not influence the protective efficacy or immunogenicity of SARS-CoV-2 vaccination when given to adults who had a sub-optimal vitamin D status at baseline.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Antibodies, Neutralizing , BNT162 Vaccine , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Dietary Supplements , Humans , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2 , Vaccine Efficacy , Vitamin D , Vitamins
9.
BMJ ; 378: e071230, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-2009215

ABSTRACT

OBJECTIVE: To determine the effect of population level implementation of a test-and-treat approach to correction of suboptimal vitamin D status (25-hydroxyvitamin D (25(OH)D) <75 nmol/L) on risk of all cause acute respiratory tract infection and covid 19. DESIGN: Phase 3 open label randomised controlled trial. SETTING: United Kingdom. PARTICIPANTS: 6200 people aged ≥16 years who were not taking vitamin D supplements at baseline. INTERVENTIONS: Offer of a postal finger prick test of blood 25(OH)D concentration with provision of a six month supply of lower dose vitamin D (800 IU/day, n=1550) or higher dose vitamin D (3200 IU/day, n=1550) to those with blood 25(OH)D concentration <75 nmol/L, compared with no offer of testing or supplementation (n=3100). Follow-up was for six months. MAIN OUTCOME MEASURES: The primary outcome was the proportion of participants with at least one swab test or doctor confirmed acute respiratory tract infection of any cause. A secondary outcome was the proportion of participants with swab test confirmed covid-19. Logistic regression was used to calculate odds ratios and associated 95% confidence intervals. The primary analysis was conducted by intention to treat. RESULTS: Of 3100 participants offered a vitamin D test, 2958 (95.4%) accepted and 2674 (86.3%) had 25(OH)D concentrations <75 nmol/L and received vitamin D supplements (n=1328 lower dose, n=1346 higher dose). Compared with 136/2949 (4.6%) participants in the no offer group, at least one acute respiratory tract infection of any cause occurred in 87/1515 (5.7%) in the lower dose group (odds ratio 1.26, 95% confidence interval 0.96 to 1.66) and 76/1515 (5.0%) in the higher dose group (1.09, 0.82 to 1.46). Compared with 78/2949 (2.6%) participants in the no offer group, 55/1515 (3.6%) developed covid-19 in the lower dose group (1.39, 0.98 to 1.97) and 45/1515 (3.0%) in the higher dose group (1.13, 0.78 to 1.63). CONCLUSIONS: Among people aged 16 years and older with a high baseline prevalence of suboptimal vitamin D status, implementation of a population level test-and-treat approach to vitamin D supplementation was not associated with a reduction in risk of all cause acute respiratory tract infection or covid-19. TRIAL REGISTRATION: ClinicalTrials.gov NCT04579640.


Subject(s)
COVID-19 , Respiratory Tract Infections , Vitamin D Deficiency , COVID-19/prevention & control , Cholecalciferol , Dietary Supplements , Double-Blind Method , Humans , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , Vitamin D/therapeutic use , Vitamin D Deficiency/diagnosis , Vitamin D Deficiency/drug therapy , Vitamins/therapeutic use
10.
J Infect Dis ; 226(11): 1903-1908, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-1997060

ABSTRACT

In this population-based cohort of 7538 adults, combined immunoglobulin (Ig) G, IgA, and IgM (IgG/A/M) anti-spike titers measured after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination were predictive of protection against breakthrough SARS-CoV-2 infection. Discrimination was significantly improved by adjustment for factors influencing risk of SARS-CoV-2 exposure, including household overcrowding, public transport use, and visits to indoor public places. Anti-spike IgG/A/M titers showed positive correlation with neutralizing antibody titers (rs = 0.80 [95% confidence interval, .72-.86]; P < .001) and S peptide-stimulated interferon-γ concentrations (rs = 0.31 [.13-.47]; P < .001).


Subject(s)
COVID-19 , Adult , Humans , COVID-19/prevention & control , SARS-CoV-2 , Longitudinal Studies , Immunologic Tests , Immunoglobulin G , Antibodies, Viral
11.
Front Immunol ; 13: 912571, 2022.
Article in English | MEDLINE | ID: covidwho-1903032

ABSTRACT

Background: Patients with primary and secondary antibody deficiency are vulnerable to COVID-19 and demonstrate diminished responses following two-dose SARS-CoV-2 vaccine schedules. Third primary vaccinations have been deployed to enhance their humoral and cellular immunity. Objectives: To determine the immunogenicity of the third primary SARS-CoV-2 immunisation in a heterogeneous cohort of patients with antibody deficiency. Methods: Participants enrolled in the COV-AD study were sampled before and after their third vaccine dose. Serological and cellular responses were determined using ELISA, live-virus neutralisation and ELISPOT assays. Results: Following a two-dose schedule, 100% of healthy controls mounted a serological response to SARS-CoV-2 vaccination, however, 38.6% of individuals with antibody deficiency remained seronegative. A third primary SARS-CoV-2 vaccine significantly increased anti-spike glycoprotein antibody seroprevalence from 61.4% to 76.0%, the magnitude of the antibody response, its neutralising capacity and induced seroconversion in individuals who were seronegative after two vaccine doses. Vaccine-induced serological responses were broadly cross-reactive against the SARS-CoV-2 B.1.1.529 variant of concern, however, seroprevalence and antibody levels remained significantly lower than healthy controls. No differences in serological responses were observed between individuals who received AstraZeneca ChAdOx1 nCoV-19 and Pfizer BioNTech 162b2 during their initial two-dose vaccine schedule. SARS-CoV-2 infection-naive participants who had received a heterologous vaccine as a third dose were significantly more likely to have a detectable T cell response following their third vaccine dose (61.5% vs 11.1%). Conclusion: These data support the widespread use of third primary immunisations to enhance humoral immunity against SARS-CoV-2 in individuals with antibody deficiency.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , Antibody Formation , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , SARS-CoV-2 , Seroepidemiologic Studies , Vaccination
12.
Cardiovasc Res ; 2022 Jun 16.
Article in English | MEDLINE | ID: covidwho-1901161

ABSTRACT

AIMS: Thrombotic complications and vasculopathy have been extensively associated with severe COVID-19 infection, however the mechanisms inducing endotheliitis and the disruption of endothelial integrity in the microcirculation are poorly understood. We hypothesized that within the vessel wall, pericytes preferentially take up viral particles and mediate the subsequent loss of vascular integrity. METHODS AND RESULTS: Immunofluorescence of post-mortem patient sections were used to assess pathophysiological aspects of COVID19 infection. The effects of COVID-19 on the microvasculature were assessed using a vascular organoid model exposed to live viral particles or recombinant viral antigens. We find increased expression of the viral entry receptor ACE2 on pericytes when compared to vascular endothelium, and a reduction in the expression of the junctional protein CD144, as well as increased cell death, upon treatment with both live virus and/or viral antigens. We observe a dysregulation of genes implicated in vascular permeability including NOTCH3, angiopoietin-2 and TEK. Activation of vascular organoids with IL-1ß did not have an additive effect on vascular permeability. Spike antigen was detected in some patients' lung pericytes, which was associated with a decrease in CD144 expression and increased platelet recruitment and VWF deposition in the capillaries of these patients, with thrombi in large vessels rich in VWF and fibrin. CONCLUSIONS: Together our data indicates that direct viral exposure to the microvasculature modelled by organoid infection and viral antigen treatment result in pericyte infection, detachment, damage and cell death, disrupting pericyte-endothelial cell crosstalk and increasing microvascular endothelial permeability, which can promote thrombotic and bleeding complications in the microcirculation. TRANSLATIONAL PERSPECTIVE: Endotheliitis is a serious complication of severe COVID-19 patients which remains poorly understood. We identify a pericyte mediated mechanism by which the vasculature becomes compromised, contributing to thrombotic complications, highlighting important avenues for the development of therapies.

13.
Journal of pediatric intensive care ; 11(2):124-129, 2020.
Article in English | EuropePMC | ID: covidwho-1898164

ABSTRACT

We describe the critical care course of children with a novel hyperinflammatory syndrome associated with coronavirus disease 2019 (COVID-19) pediatric inflammatory multisystem syndrome temporally associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with focus on trajectory before and after immunomodulation. Overall, 10 patients who met the U.K. Royal College of Pediatrics and Child Health case definition during a 2-month study period were analyzed. All tested positive for SARS-CoV-2 IgG antibody. Although only 20% were ventilated, 100% required inotropic or vasopressor support. All children had significantly raised inflammatory markers with a median C-reactive protein of 248 (175–263) mg/L, ferritin of 1,561 (726–2,255) µg/L, and troponin-I of 723 (351–2,235) ng/L. Six patients had moderately impaired myocardial function and two had severe impairment. None needed extracorporeal membrane oxygenation. Despite severe illness only a brief period of critical care support of 3 to 5 days was required. Eight received at least one dose of intravenous immunoglobulin. Six received high-dose steroids. Clinical improvement including cardiovascular stability and reduction in inflammatory markers may have occurred with and without immunomodulation.

14.
J Clin Immunol ; 42(5): 923-934, 2022 07.
Article in English | MEDLINE | ID: covidwho-1787846

ABSTRACT

BACKGROUND: Vaccination prevents severe morbidity and mortality from COVID-19 in the general population. The immunogenicity and efficacy of SARS-CoV-2 vaccines in patients with antibody deficiency is poorly understood. OBJECTIVES: COVID-19 in patients with antibody deficiency (COV-AD) is a multi-site UK study that aims to determine the immune response to SARS-CoV-2 infection and vaccination in patients with primary or secondary antibody deficiency, a population that suffers from severe and recurrent infection and does not respond well to vaccination. METHODS: Individuals on immunoglobulin replacement therapy or with an IgG less than 4 g/L receiving antibiotic prophylaxis were recruited from April 2021. Serological and cellular responses were determined using ELISA, live-virus neutralisation and interferon gamma release assays. SARS-CoV-2 infection and clearance were determined by PCR from serial nasopharyngeal swabs. RESULTS: A total of 5.6% (n = 320) of the cohort reported prior SARS-CoV-2 infection, but only 0.3% remained PCR positive on study entry. Seropositivity, following two doses of SARS-CoV-2 vaccination, was 54.8% (n = 168) compared with 100% of healthy controls (n = 205). The magnitude of the antibody response and its neutralising capacity were both significantly reduced compared to controls. Participants vaccinated with the Pfizer/BioNTech vaccine were more likely to be seropositive (65.7% vs. 48.0%, p = 0.03) and have higher antibody levels compared with the AstraZeneca vaccine (IgGAM ratio 3.73 vs. 2.39, p = 0.0003). T cell responses post vaccination was demonstrable in 46.2% of participants and were associated with better antibody responses but there was no difference between the two vaccines. Eleven vaccine-breakthrough infections have occurred to date, 10 of them in recipients of the AstraZeneca vaccine. CONCLUSION: SARS-CoV-2 vaccines demonstrate reduced immunogenicity in patients with antibody deficiency with evidence of vaccine breakthrough infection.


Subject(s)
COVID-19 , Primary Immunodeficiency Diseases , Viral Vaccines , Antibodies, Viral , COVID-19 Vaccines , Humans , SARS-CoV-2
15.
BMC Med ; 20(1): 87, 2022 02 22.
Article in English | MEDLINE | ID: covidwho-1700554

ABSTRACT

BACKGROUND: Prospective population-based studies investigating multiple determinants of pre-vaccination antibody responses to SARS-CoV-2 are lacking. METHODS: We did a prospective population-based study in SARS-CoV-2 vaccine-naive UK adults recruited between May 1 and November 2, 2020, without a positive swab test result for SARS-CoV-2 prior to enrolment. Information on 88 potential sociodemographic, behavioural, nutritional, clinical and pharmacological risk factors was obtained through online questionnaires, and combined IgG/IgA/IgM responses to SARS-CoV-2 spike glycoprotein were determined in dried blood spots obtained between November 6, 2020, and April 18, 2021. We used logistic and linear regression to estimate adjusted odds ratios (aORs) and adjusted geometric mean ratios (aGMRs) for potential determinants of SARS-CoV-2 seropositivity (all participants) and antibody titres (seropositive participants only), respectively. RESULTS: Of 11,130 participants, 1696 (15.2%) were seropositive. Factors independently associated with  higher risk of SARS-CoV-2 seropositivity included frontline health/care occupation (aOR 1.86, 95% CI 1.48-2.33), international travel (1.20, 1.07-1.35), number of visits to shops and other indoor public places (≥ 5 vs. 0/week: 1.29, 1.06-1.57, P-trend = 0.01), body mass index (BMI) ≥ 25 vs. < 25 kg/m2 (1.24, 1.11-1.39), South Asian vs. White ethnicity (1.65, 1.10-2.49) and alcohol consumption ≥15 vs. 0 units/week (1.23, 1.04-1.46). Light physical exercise associated with  lower risk (0.80, 0.70-0.93, for ≥ 10 vs. 0-4 h/week). Among seropositive participants, higher titres of anti-Spike antibodies associated with factors including BMI ≥ 30 vs. < 25 kg/m2 (aGMR 1.10, 1.02-1.19), South Asian vs. White ethnicity (1.22, 1.04-1.44), frontline health/care occupation (1.24, 95% CI 1.11-1.39), international travel (1.11, 1.05-1.16) and number of visits to shops and other indoor public places (≥ 5 vs. 0/week: 1.12, 1.02-1.23, P-trend = 0.01); these associations were not substantially attenuated by adjustment for COVID-19 disease severity. CONCLUSIONS: Higher alcohol consumption and lower light physical exercise represent new modifiable risk factors for SARS-CoV-2 infection. Recognised associations between South Asian ethnic origin and obesity and higher risk of SARS-CoV-2 seropositivity were independent of other sociodemographic, behavioural, nutritional, clinical, and pharmacological factors investigated. Among seropositive participants, higher titres of anti-Spike antibodies in people of South Asian ancestry and in obese people were not explained by greater COVID-19 disease severity in these groups.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , Antibody Formation , COVID-19 Vaccines , Humans , Longitudinal Studies , Prospective Studies , United Kingdom , Vaccination
16.
Clin Exp Immunol ; 207(1): 3-10, 2022 01 28.
Article in English | MEDLINE | ID: covidwho-1621554

ABSTRACT

B-cell-depleting agents are among the most commonly used drugs to treat haemato-oncological and autoimmune diseases. They rapidly induce a state of peripheral B-cell aplasia with the potential to interfere with nascent vaccine responses, particularly to novel antigens. We have examined the relationship between B-cell reconstitution and SARS-CoV-2 vaccine responses in two cohorts of patients previously exposed to B-cell-depleting agents: a cohort of patients treated for haematological B-cell malignancy and another treated for rheumatological disease. B-cell depletion severely impairs vaccine responsiveness in the first 6 months after administration: SARS-CoV-2 antibody seroprevalence was 42.2% and 33.3% in the haemato-oncological patients and rheumatology patients, respectively and 22.7% in patients vaccinated while actively receiving anti-lymphoma chemotherapy. After the first 6 months, vaccine responsiveness significantly improved during early B-cell reconstitution; however, the kinetics of reconstitution was significantly faster in haemato-oncology patients. The AstraZeneca ChAdOx1 nCoV-19 vaccine and the Pfizer BioNTech 162b vaccine induced equivalent vaccine responses; however, shorter intervals between vaccine doses (<1 m) improved the magnitude of the antibody response in haeamto-oncology patients. In a subgroup of haemato-oncology patients, with historic exposure to B-cell-depleting agents (>36 m previously), vaccine non-responsiveness was independent of peripheral B-cell reconstitution. The findings have important implications for primary vaccination and booster vaccination strategies in individuals clinically vulnerable to SARS-CoV-2.


Subject(s)
COVID-19 , Rheumatic Diseases , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , Rheumatic Diseases/drug therapy , SARS-CoV-2 , Seroepidemiologic Studies
17.
J Mol Biol ; 434(2): 167332, 2022 01 30.
Article in English | MEDLINE | ID: covidwho-1492301

ABSTRACT

Extensive glycosylation of viral glycoproteins is a key feature of the antigenic surface of viruses and yet glycan processing can also be influenced by the manner of their recombinant production. The low yields of the soluble form of the trimeric spike (S) glycoprotein from SARS-CoV-2 has prompted advances in protein engineering that have greatly enhanced the stability and yields of the glycoprotein. The latest expression-enhanced version of the spike incorporates six proline substitutions to stabilize the prefusion conformation (termed SARS-CoV-2 S HexaPro). Although the substitutions greatly enhanced expression whilst not compromising protein structure, the influence of these substitutions on glycan processing has not been explored. Here, we show that the site-specific N-linked glycosylation of the expression-enhanced HexaPro resembles that of an earlier version containing two proline substitutions (2P), and that both capture features of native viral glycosylation. However, there are site-specific differences in glycosylation of HexaPro when compared to 2P. Despite these discrepancies, analysis of the serological reactivity of clinical samples from infected individuals confirmed that both HexaPro and 2P protein are equally able to detect IgG, IgA, and IgM responses in all sera analysed. Moreover, we extend this observation to include an analysis of glycan engineered S protein, whereby all N-linked glycans were converted to oligomannose-type and conclude that serological activity is not impacted by large scale changes in glycosylation. These observations suggest that variations in glycan processing will not impact the serological assessments currently being performed across the globe.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Mutation, Missense/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/blood , Binding Sites/genetics , COVID-19/virology , Glycosylation , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Mannose/metabolism , Mutation, Missense/genetics , Oligosaccharides/metabolism , Polysaccharides/metabolism , Proline/genetics , Proline/immunology , Proline/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
18.
BMJ Open Respir Res ; 8(1)2021 09.
Article in English | MEDLINE | ID: covidwho-1438095

ABSTRACT

OBJECTIVE: To determine clinical and ethnodemographic correlates of serological responses against the SARS-CoV-2 spike glycoprotein following mild-to-moderate COVID-19. DESIGN: A retrospective cohort study of healthcare workers who had self-isolated due to COVID-19. SETTING: University Hospitals Birmingham NHS Foundation Trust, UK (UHBFT). PARTICIPANTS: 956 healthcare workers were recruited by open invitation via UHBFT trust email and social media between 27 April 2020 and the 8 June 2020. INTERVENTION: Participants volunteered a venous blood sample that was tested for the presence of anti-SARS-CoV-2 spike glycoprotein antibodies. Results were interpreted in the context of the symptoms of their original illness and ethnodemographic variables. RESULTS: Using an assay that simultaneously measures the combined IgG, IgA and IgM response against the spike glycoprotein (IgGAM), the overall seroprevalence within this cohort was 46.2% (n=442/956). The seroprevalence of immunoglobulin isotypes was 36.3%, 18.7% and 8.1% for IgG, IgA and IgM, respectively. IgGAM identified serological responses in 40.6% (n=52/128) of symptomatic individuals who reported a negative SARS-CoV-2 PCR test. Increasing age, non-white ethnicity and obesity were independently associated with greater IgG antibody response against the spike glycoprotein. Self-reported fever and fatigue were associated with greater IgG and IgA responses against the spike glycoprotein. The combination of fever and/or cough and/or anosmia had a positive predictive value of 92.3% for seropositivity in self-isolating individuals a time when Wuhan strain SARS-CoV-2 was predominant. CONCLUSIONS AND RELEVANCE: Assays employing combined antibody detection demonstrate enhanced seroepidemiological sensitivity and can detect prior viral exposure even when PCR swabs have been negative. We demonstrate an association between known ethnodemographic risk factors associated with mortality from COVID-19 and the magnitude of serological responses in mild-to-moderate disease.


Subject(s)
Antibodies, Viral/blood , Antibody Formation , COVID-19 , Adult , COVID-19/immunology , Female , Health Personnel , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Retrospective Studies , Seroepidemiologic Studies , United Kingdom
20.
Immunology ; 164(1): 135-147, 2021 09.
Article in English | MEDLINE | ID: covidwho-1295026

ABSTRACT

Detecting antibody responses during and after SARS-CoV-2 infection is essential in determining the seroepidemiology of the virus and the potential role of antibody in disease. Scalable, sensitive and specific serological assays are essential to this process. The detection of antibody in hospitalized patients with severe disease has proven relatively straightforward; detecting responses in subjects with mild disease and asymptomatic infections has proven less reliable. We hypothesized that the suboptimal sensitivity of antibody assays and the compartmentalization of the antibody response may contribute to this effect. We systematically developed an ELISA, optimizing different antigens and amplification steps, in serum and saliva from non-hospitalized SARS-CoV-2-infected subjects. Using trimeric spike glycoprotein, rather than nucleocapsid, enabled detection of responses in individuals with low antibody responses. IgG1 and IgG3 predominate to both antigens, but more anti-spike IgG1 than IgG3 was detectable. All antigens were effective for detecting responses in hospitalized patients. Anti-spike IgG, IgA and IgM antibody responses were readily detectable in saliva from a minority of RT-PCR confirmed, non-hospitalized symptomatic individuals, and these were mostly subjects who had the highest levels of anti-spike serum antibodies. Therefore, detecting antibody responses in both saliva and serum can contribute to determining virus exposure and understanding immune responses after SARS-CoV-2 infection.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antigens, Viral/immunology , COVID-19/blood , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , Saliva
SELECTION OF CITATIONS
SEARCH DETAIL